UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 1st Semester Examination, 2021

CC2-Mathematics

Algebra

GROUP-A

1. Answer any four questions:
(a) Find the remainder when $1!+2!+3!+\cdots \cdots+50$! is divided by 15 .
(b) If one of the roots of the equation $x^{3}+p x^{2}+q x+r=0$ is equal to the sum of the other two roots, prove that $p^{3}+8 r=4 p q$.
(c) Find the value of $\sum \frac{1}{\beta+\gamma}$, if α, β, γ be the roots of the equation $x^{3}+p x+q=0$.
(d) Prove that $(n+1)^{n}>2^{n} \cdot n!$.
(e) Find the minimum number of complex roots of the equation $x^{7}-3 x^{3}+x^{2}=0$. (Descart's rule of sign may be applied).
(f) If A and P are $n \times n$ matrices and P is non-singular, then show that A and $P^{-1} A P$ have the same eigenvalues.

GROUP-B

Answer any four questions

2. Show that $\frac{n^{11}}{11}+\frac{n^{3}}{3}+\frac{19 n}{33}$ is integer for every natural number n.
3. Solve the following biquadratic equation by Ferrari's method

$$
2 x^{4}+5 x^{3}-8 x^{2}-17 x-6=0
$$

4. Verify Cayley-Hamilton theorem for the matrix

$$
\left(\begin{array}{ccc}
1 & 0 & 2 \\
0 & -1 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

Hence find A^{-1} and A^{9}.
5. If the roots of $x^{3}+2 x^{2}+3 x+1=0$ are α, β, γ then find the equation whose roots are $\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}-\frac{1}{\gamma^{2}}, \frac{1}{\beta^{2}}+\frac{1}{\gamma^{2}}-\frac{1}{\alpha^{2}}$ and $\frac{1}{\gamma^{2}}+\frac{1}{\alpha^{2}}-\frac{1}{\beta^{2}}$.

UG/CBCS/B.Sc./Hons./1st Sem./Mathematics/MATHCC2/2021

6. Find the real value of λ such that the system has a non-zero solution:

$$
\begin{aligned}
& x+2 y+3 z=\lambda x \\
& 3 x+y+2 z=\lambda y \\
& 2 x+3 y+z=\lambda z
\end{aligned}
$$

7. If $a_{1}, a_{2}, \cdots \cdots, a_{n}$ and $t_{1}, t_{2}, \cdots \cdots, t_{n}$ be two lists of real numbers then show that $\left(a_{1} t_{1}+a_{2} t_{2}+\cdots \cdots+a_{n} t_{n}\right)^{2} \leq\left(a_{1}^{2}+a_{2}^{2}+\cdots \cdots+a_{n}^{2}\right)\left(t_{1}^{2}+t_{2}^{2}+\cdots \cdots+t_{n}^{2}\right)$ and equality holds when $\frac{a_{1}}{t_{1}}=\frac{a_{2}}{t_{2}}=\cdots \cdots=\frac{a_{n}}{t_{n}}$.

GROUP-C

Answer any two questions

8. (a) Prove that $8 a b c<(1-a)(1-b)(1-c)<\frac{8}{27}$, if a, b, c are not same and $a+b+c=1$.
(b) If p is a prime and a, b are positive integers, show that

$$
(a+b)^{p} \equiv(a+b)(\bmod p)
$$

(c) Find the value of $(-i)^{2 / 5}$.
9. (a) If $x_{1}>x_{2}>x_{3}>\cdots \cdots>x_{n}$, prove that

$$
\left(x_{1}-x_{2}\right)\left(x_{2}-x_{3}\right) \cdots \cdots\left(x_{n-1}-x_{n}\right)<\left(\frac{x_{1}-x_{n}}{n-1}\right)^{n-1}
$$

(b) Find a non-singular matrix P such that $P^{T} A P$ is the normal form of A under
congruence, where $A=\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 2\end{array}\right)$.
Hence find rank, index and signature of A.
10.(a) If a mapping $f:(-1,1) \rightarrow \mathbb{R}$ is defined by $f(x)=\frac{x}{1-|x|} \quad \forall x \in(-1,1)$, then show $2+3+1+2$ that it is a continuous bijection. Find its inverse and check continuity of this inverse.
(b) Reduce the matrix A to row reduced echelon form and hence find its rank where

$$
A=\left(\begin{array}{cccc}
0 & 1 & -3 & 1 \\
1 & 0 & 1 & 1 \\
3 & 1 & 0 & 2 \\
1 & 1 & -2 & 0
\end{array}\right)
$$

11.(a) If $\alpha=\cos \frac{2 \pi}{n}+i \sin \frac{2 \pi}{n}$ and if p is prime to n, prove that

$$
1+\alpha^{p}+\alpha^{2 p}+\cdots \cdots+\alpha^{(n-1) p}=0
$$

(b) If $a \equiv b(\bmod m)$ then show that $a^{n} \equiv b^{n}(\bmod m)$ for all possible integers n. Show by example that the converse of the result is not hold in general.
\qquad

