

'समानो मन्त्रः समितिः समानी' **UNIVERSITY OF NORTH BENGAL**

B.Sc. Honours 1st Semester Examination, 2021

CC2-MATHEMATICS

ALGEBRA

Time Allotted: 2 Hours

Full Marks: 60

 $3 \times 4 = 12$

 $6 \times 4 = 24$

The figures in the margin indicate full marks. All symbols are of usual significance.

GROUP-A

1. Answer any *four* questions:

- (a) Find the remainder when $1! + 2! + 3! + \dots + 50!$ is divided by 15.
- (b) If one of the roots of the equation $x^3 + px^2 + qx + r = 0$ is equal to the sum of the other two roots, prove that $p^3 + 8r = 4pq$.
- (c) Find the value of $\sum \frac{1}{\beta + \gamma}$, if α , β , γ be the roots of the equation $x^3 + px + q = 0$.
- (d) Prove that $(n+1)^n > 2^n \cdot n!$.
- (e) Find the minimum number of complex roots of the equation $x^7 3x^3 + x^2 = 0$. (Descart's rule of sign may be applied).
- (f) If A and P are $n \times n$ matrices and P is non-singular, then show that A and $P^{-1}AP$ have the same eigenvalues.

GROUP-B

Answer any four questions

- Show that $\frac{n^{11}}{11} + \frac{n^3}{3} + \frac{19n}{33}$ is integer for every natural number *n*. 2.
- 3. Solve the following biquadratic equation by Ferrari's method $2x^4 + 5x^3 - 8x^2 - 17x - 6 = 0$
- 4. Verify Cayley-Hamilton theorem for the matrix

$$\left(\begin{array}{rrrrr}
1 & 0 & 2 \\
0 & -1 & 1 \\
0 & 1 & 0
\end{array}\right)$$

Hence find A^{-1} and A^9 .

If the roots of $x^3 + 2x^2 + 3x + 1 = 0$ are α , β , γ then find the equation whose roots 5. are $\frac{1}{\alpha^2} + \frac{1}{\beta^2} - \frac{1}{\nu^2}$, $\frac{1}{\beta^2} + \frac{1}{\nu^2} - \frac{1}{\alpha^2}$ and $\frac{1}{\nu^2} + \frac{1}{\alpha^2} - \frac{1}{\beta^2}$.

UG/CBCS/B.Sc./Hons./1st Sem./Mathematics/MATHCC2/2021

6. Find the real value of λ such that the system has a non-zero solution:

$$x + 2y + 3z = \lambda x$$

$$3x + y + 2z = \lambda y$$

$$2x + 3y + z = \lambda z$$

If a_1, a_2, \dots, a_n and t_1, t_2, \dots, t_n be two lists of real numbers then show that 7. $(a_1t_1 + a_2t_2 + \dots + a_nt_n)^2 \le (a_1^2 + a_2^2 + \dots + a_n^2)(t_1^2 + t_2^2 + \dots + t_n^2)$ and equality holds when $\frac{a_1}{t_1} = \frac{a_2}{t_2} = \dots = \frac{a_n}{t_n}$.

GROUP-C

12×2=24 Answer any two questions

8. (a) Prove that $8abc < (1-a)(1-b)(1-c) < \frac{8}{27}$, if a, b, c are not same and a + b + c = 1. 5 (b) If p is a prime and a, b are positive integers, show that 3

 $(a+b)^p \equiv (a+b) \pmod{p}$

(c) Find the value of $(-i)^{2/5}$

9. (a) If $x_1 > x_2 > x_3 > \dots > x_n$, prove that

$$(x_1 - x_2)(x_2 - x_3) \cdots (x_{n-1} - x_n) < \left(\frac{x_1 - x_n}{n-1}\right)^{n-1}$$

(b) Find a non-singular matrix P such that $P^T A P$ is the normal form of A under 4 + 3congruence, where $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 2 \end{pmatrix}$.

Hence find rank, index and signature of A.

10.(a) If a mapping $f:(-1, 1) \to \mathbb{R}$ is defined by $f(x) = \frac{x}{1-|x|} \quad \forall x \in (-1, 1)$, then show 2+3+1+2

that it is a continuous bijection. Find its inverse and check continuity of this inverse.

(b) Reduce the matrix A to row reduced echelon form and hence find its rank where

$$A = \begin{pmatrix} 0 & 1 & -3 & 1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & -2 & 0 \end{pmatrix}$$

11.(a) If $\alpha = \cos \frac{2\pi}{n} + i \sin \frac{2\pi}{n}$ and if p is prime to n, prove that $1 + \alpha^p + \alpha^{2p} + \dots + \alpha^{(n-1)p} = 0$

(b) If $a \equiv b \pmod{m}$ then show that $a^n \equiv b^n \pmod{m}$ for all possible integers n. Show 4 + 2by example that the converse of the result is not hold in general.

4

6

4

5